Welcome to Hexo ! This is your very
first post. Check documentation for
more info. If you get any problems when using Hexo, you can find the
answer in troubleshooting or
you can ask me on GitHub .
Quick Start
Create a new post
1 $ hexo new "My New Post"
More info: Writing
Run server
More info: Server
Generate static files
More info: Generating
Deploy to remote sites
More info: Deployment
测试公式
\[
E=mc^2
\]
\[
\sigma(z_i) = \frac{e^{z_{i}}}{\sum_{j=1}^K e^{z_{j}}} \ \ \ for\
i=1,2,\dots,K
\]
\[
L_{\delta}=
\left\{\begin{matrix}
\frac{1}{2}(y - \hat{y})^{2} & if \left | (y -
\hat{y}) \right | < \delta\\
\delta ((y - \hat{y}) - \frac1 2 \delta) & otherwise
\end{matrix}\right.
\]
\[
\epsilon \sim \mathcal{N}(0, \textbf{I})
\]
\[
\vec{z} \sim \mathcal{N}(\vec{\mu}, \sigma^2 \textbf{I})
\]
\[
\sum_{i=1}^{D}|x_i-y_i|
\]
\[
Accuracy = \frac{TP+TN}{TP+TN+FP+FN}
\]
\[
Precision = \frac{TP}{TP+FP}
\]
\[
Recall = \frac{TP}{TP+FN}
\]
\[
F1 = \frac{2*Precision*Recall}{Precision+Recall} =
\frac{2*TP}{2*TP+FP+FN}
\]
测试代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 import netimport torchimport osfrom face_alignment import alignimport numpy as np adaface_models = { 'ir_50' :"pretrained/adaface_ir50_ms1mv2.ckpt" , }def load_pretrained_model (architecture='ir_50' ): assert architecture in adaface_models.keys() model = net.build_model(architecture) statedict = torch.load(adaface_models[architecture])['state_dict' ] model_statedict = {key[6 :]:val for key, val in statedict.items() if key.startswith('model.' )} model.load_state_dict(model_statedict) model.eval () return modeldef to_input (pil_rgb_image ): np_img = np.array(pil_rgb_image) brg_img = ((np_img[:,:,::-1 ] / 255. ) - 0.5 ) / 0.5 tensor = torch.tensor([brg_img.transpose(2 ,0 ,1 )]).float () return tensorif __name__ == '__main__' : model = load_pretrained_model('ir_50' ) feature, norm = model(torch.randn(2 ,3 ,112 ,112 )) test_image_path = 'face_alignment/test_images' features = [] for fname in sorted (os.listdir(test_image_path)): path = os.path.join(test_image_path, fname) aligned_rgb_img = align.get_aligned_face(path) bgr_tensor_input = to_input(aligned_rgb_img) feature, _ = model(bgr_tensor_input) features.append(feature) similarity_scores = torch.cat(features) @ torch.cat(features).T print (similarity_scores)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 #include <iostream> #include <vector> #include <stack> using namespace std;struct TreeNode { int val; TreeNode *left; TreeNode *right; TreeNode () : val (0 ), left (nullptr ), right (nullptr ) {} TreeNode (int x) : val (x), left (nullptr ), right (nullptr ) {} TreeNode (int x, TreeNode *left, TreeNode *right) : val (x), left (left), right (right) {} };class Solution {public : vector<int > inorderTraversal (TreeNode *root) { vector<int > res; stack<TreeNode *> s; TreeNode *p = root; while (p || !s.empty ()) { if (p) { s.push (p); p = p->left; } else { TreeNode *temp = s.top (); s.pop (); res.push_back (temp->val); p = temp->right; } } return res; } };class Solution2 {public : vector<int > inorderTraversal (TreeNode *root) { vector<int > res; stack<TreeNode *> s; TreeNode *p = root; while (p || !s.empty ()) { while (p) { s.push (p); p = p->left; } TreeNode *temp = s.top (); s.pop (); res.push_back (temp->val); p = temp->right; } return res; } };int main () { return 0 ; }